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EXECUTIVE SUMMARY

The work carried out under NREL Subcontract XAN-4-13318-07 has been focused on the
characterization and evaluation of low gap (a-Si,Ge:H) alloy materials and on issues related to
overall stability in the mid-gap (a-Si:H) materials.  First of all, we characterized a extensive series
of Uni-Solar a-Si,Ge:H samples using drive-level capacitance profiling (DLCP) and the analysis
of sub-band-gap photocapacitance and photocurrent spectra.  We thus identified several bands of
deep defect transitions.  We had hypothesized that one type of defect band optical transition in
these alloys, that did not seem to be present in pure a-Si:H, might indicate a significant
population of D+ states in these nominally intrinsic a-Si,Ge:H samples.  We also carried out light
induced degradation studies of these alloys which tended to support this conclusion and
indicated that charged defect ratios could vary significantly after light soaking.  We then
examined the properties of very lightly n- and p-type a-Si,Ge:H material which verified that
charged defects are indeed responsible for the different observed defect bands in device quality
a-Si,Ge:H alloy material.  This conclusion undoubtedly will have important consequences for
understanding the transport and degradation process in a-Si,Ge:H devices.

Second, we reported results of our measurements on a-Si,Ge:H alloy "cathodic" samples
produced at Harvard University.  These samples were found to exhibit significantly lower defect
densities in the high Ge composition range (>50at.% Ge) than alloy samples produced either by
conventional glow discharge or photo-CVD deposition.  Moreover, this lower defect density
appeared to be entirely consistent with simple defect formation models given the differences
observed for other aspects of the electronic structure in these samples:  a larger gap energy for a
given Ge fraction, a different relative energy position of the defect within the gap, and a smaller
Urbach energy.  However, our measurements also indicated a much smaller value of (µτ)h for
these samples than would have been expected given their lower defect densities.

Third, we performed voltage pulse stimulated capacitance transient measurements on
a-Si:H/a-Si,Ge:H heterostructure samples to look for carrier trapping states that might be
associated with this interface.  We found there was a clear signature of trapped hole emission
extending over long times associated specifically with the interface itself in concentrations of
roughly 1011 cm-2..  However, we found that these hole traps did not seem to act as
recombination centers for electrons brought into the interface region.  Nonetheless, these traps
seem to exist in sufficient densities to alter the electric field profiles across such heterojunction
structures and, therefore, impact the performance of cells which incorporate such interfaces.

Fourth, we reported our results on several hot-wire a-Si:H samples produced with varying
hydrogen levels.  These samples were evaluated in both their as-grown state as well as the light
degraded state.  We found that samples with a H content above 10at.% exhibited essentially
identical properties to those of conventional glow discharge a-Si:H.  However, as the H level was
decreased to about 2at.% the electronic properties actually improved:  the degraded defect level
was reduced and the Urbach tail was slightly narrower. These changes were accompanied by
more than a 0.1eV decrease in optical gap.  Therefore, our studies indicate that hot-wire produced
a-Si:H, with H levels between 2-5at.%, should lead to mid-gap devices with superior properties.

Finally, we discussed some results on glow discharge material as well as ECR deposited
a-Si:H  grown under hydrogen dilution conditions.  We confirmed that, in terms of deep defect
creation, such films exhibited improved stability compared to conventional glow discharge
material:  roughly a factor of three lower deep defect densities than those grown using pure
silane.  Furthermore, the hydrogen diluted samples degraded at a slower rate and saturated at a
significantly lower value (by about a factor of five) than pure silane deposited sample.  These
results agree with reports of increased relative stability of cells employing hydrogen-diluted i-
layers.  To try to gain some insight into the mechanisms responsible for such differences in
stability we also compared Ar and H diluted SiH4 grown samples with a sample that was
switched periodically between these two types of gas mixtures during growth.  While still very
preliminary, our studies indicate that film strain may play an important role.


